
Reflections

Uncertainty and Decision Making in Climate
Change Economics

Geoffrey Heal* and Antony Millnery

Introduction

The issue of climate change is beset with uncertainties, many of which are only partially

captured by our existing analytical tools. This “Reflections” explores these uncertainties,

some of which are rooted in the underlying science while others stem from an imperfect

understanding of how the socioeconomic system will evolve and cope with climatic shifts.

Although robust general conclusions about the nature and impacts of climate change can be

drawn from the existing scientific and economic literatures, in many cases our knowledge of the

climate problem is ambiguous and our uncertainty is deep. In the words of Knight (1921), we

are in a world of “uncertainty” (unknown probabilities) rather than “risk” (known probabil-

ities). How then should we make policy decisions in such an informational environment?

There have been several surveys of uncertainty in environmental economics, and climate

change in particular. These include Heal and Kristrom (2002) and Pindyck (2007), as well as a

2011 symposium in this journal (Nordhaus 2011; Pindyck 2011; Weitzman 2011) that exam-

ined some of the questions raised by fat-tailed probabilities of climate catastrophes.1 These

reviews focus on issues that have become the bread and butter of economic approaches to

uncertainty: irreversibility, discounting, and the consequences of the standard expected utility

approach to representing uncertainty.

This article takes a different approach, arguing that the expected utility framework for de-

cision making under uncertainty may be of limited use for analyzing the climate problem (see

also Kunreuther et al. 2013). We review the decision theory literature, explore alternative de-

cision frameworks that may be more appropriate, and investigate how they can be applied to the
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issue of climate policy. In particular, we ask, What do we know about the climate problem, can

we meaningfully characterize our knowledge with objective probabilities derived from data, and

what will, in all likelihood, remain unquantifiable? We argue that some of the most important

uncertainties in climate economics fall into the last category: they are inherently unpredictable.

The remainder of the article is organized as follows. First we discuss sources of uncertainty

and their relative importance for climate policy. We decompose the sources of uncertainty into

scientific and socioeconomic components, with the former arising from our incomplete know-

ledge of the climate system and the latter from our imperfect understanding of the impacts of

climate change on human societies, how those societies will respond, and how we should value

these impacts. Next we examine decision frameworks that may be more appropriate in the

context of deep uncertainty, discuss how they can be applied to the climate problem, and review

some examples of such applications. We conclude with a brief summary and discussion of the

challenges and opportunities for economists to develop approaches to uncertainty and decision

making in climate economics.

Sources of Scientific Uncertainty

Advances in the science of climate change detection and attribution over the past twenty years

have made it clear beyond a reasonable doubt that human emissions of greenhouse gases

(GHGs) are largely responsible for the observed changes in global temperature during the

twentieth century (Intergovernmental Panel on Climate Change [IPCC] 2007; Stone et al.

2009). Thus as we continue to pump carbon dioxide (CO2) and other GHGs into the atmos-

phere, the climate will change further. What is less clear is exactly how much and how quickly the

global climate will respond to these changes in the composition of the atmosphere. The scientific

community has constructed models that attempt to quantify the relationship between future

climate and GHG emissions, but it is still highly uncertain. This section describes the nature of

uncertainty in scientific projections of climate change and its relevance for policy choices.

Uncertainty in Climate Sensitivity

Climate science can provide some of the quantitative information we need about climate

change, but it is not as precise as we would like. Consider the scientific community’s estimates

of the climate sensitivity parameter that measures the average surface warming resulting from a

doubling of the atmospheric concentration of CO2, in equilibrium. This parameter tells us how

sensitive global average temperature is to changes in CO2 concentration in the long run, and it is

perhaps the most studied and most frequently quoted summary statistic in all of climate

science.2

Figure 1 presents estimates of the probability distribution for climate sensitivity from several

recent studies. Clearly there is much disagreement among these studies. To identify the sources

2Increasingly, scientists are focusing on other summary statistics, partly because the uncertainty in climate
sensitivity has remained essentially unchanged over several decades (Knutti and Hegerl 2008), and partly
because other measures, such as transient climate response—the global mean temperature change that is
realized at the time of CO2 doubling if CO2 concentrations are increased by 1 percent per year—provide
more dynamic information about the near-term response of the climate system to increases in GHG concen-
trations. Other alternatives include peak warming from a cumulative emissions target (Allen et al. 2009).
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of the variability in these climate sensitivity estimates, it is helpful to examine how they are

produced. Climate sensitivity is usually estimated by running global climate models using

hypothetical emissions scenarios. These models are very complex, and there is a great deal of

uncertainty about the values of their many parameters. To address this parametric uncertainty,

scientists run the models with many different parameter values and weight the predicted values

of climate sensitivity using a measure of the likelihood of that run’s parameter values. There are

many ways of assigning likelihoods to different parameter configurations. One is to assume that

all sets of parameter values are equally likely. Another is to ask climate experts for their prior

probabilities concerning the model parameters and use them to weight the model runs. Almost

all of the more recent studies weight parameters based on how well they reproduce historical

climate observations. Many studies arrive at their estimates by using Bayesian methods to

combine experts’ prior probabilities with historical observations. All of these techniques are

used by the studies in Figure 1, although not always in the same way.

Even if we restrict our attention to those studies that base their estimates of climate

sensitivity on historical data, there is still a lot of variability in the estimates: some studies

use paleoclimate data, some use the cooling from the aerosols released by large volcanic

eruptions, and some use the instrumental record over the twentieth century. Most im-

portantly, even if we pooled all the data and used a single consistent weighting scheme to

evaluate model predictions, there would still be a lot of variability in estimates of climate

sensitivity because there is no single agreed-upon best climate model for estimating cli-

mate sensitivity. Instead, given that there is so much about the climate system that we do

not understand, there are many models, each with its own representation of physical,

chemical, and biological processes. Although these models have many features in

Figure 1 Estimates of the probability distribution for climate sensitivity in degrees Celsius. Reproduced

from Millner Dietz and Heal (2013b) with permission.
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common, they are not statistically independent. Thus we cannot treat the studies in Figure

1 as independent estimates of some underlying distribution. Moreover, because the models

are all calibrated on related data, we cannot objectively quantify how the models depend

on one another. Finally, it is important to point out that it is impossible to obtain the

key data that would allow us to determine which model is “best.” To do so would

require having an exact copy of the earth, exposing it to increased CO2 emissions, and

ranking models according to how well they predicted this fictitious planet’s climatic

response. All of these complications make it difficult to interpret the information in

Figure 1 in a standard probabilistic framework without making some strong subjective

judgements about how to combine the climate sensitivity estimates from the different

studies (Knutti 2010; Knutti et al. 2010).

Despite these methodological issues, it would be incorrect to say that the set of distri-

butions in Figure 1 provide us with no information about climate sensitivity. For example,

the distributions indicate that it is very unlikely that climate sensitivity is less than 1�C. In

addition, a lot of the weight in most of the distributions is in the 2 to 4.5�C range, which is

the IPCC’s official “likely” range for climate sensitivity. Finally, a lot of the disagreement

between the estimates occurs in the upper tails of the distributions. That is, the data do not

limit the estimates of the high end of climate change well at all (Allen et al. 2006; Roe and

Baker 2007), which means that we understand little about the likelihood of worst case

outcomes.

Contributors to Uncertainty over Time

Climate sensitivity is a very coarse measure of the magnitude of the climate problem. On its

own, it does not tell us much about when and where changes in temperature are likely to occur,

information that is crucial for policymakers. The main contributors to the uncertainty in

temperature projections differ by the lead time and geographic region of the prediction.

Hawkins and Sutton (2009) decompose the uncertainty in temperature projections into

three parts: initial condition uncertainty (i.e., variations in model predictions due to small

changes in how they are initialized), emissions scenario uncertainty (i.e., uncertainty about the

path of future GHG emissions), and model uncertainty (i.e., uncertainty about which climate

model captures the dynamics of the climate system). Figure 2 shows how these factors con-

tribute to uncertainty about global mean temperature over time.

For short-term predictions, that is, less than about twenty years into the future, initial con-

dition and model uncertainty are dominant. The fact that initial condition uncertainty plays an

important role for shorter term predictions should come as no surprise. The climate system is

chaotic, and the evolution of chaotic systems, by definition, shows great sensitivity to initial

conditions. Hawkins and Sutton (2009) show that initial condition uncertainty is especially

important for regional predictions, making substantial contributions to total uncertainty

for predictions of sixty years or more. At the global level, for projections twenty to fifty years

into the future, the dominant source of uncertainty is model uncertainty (i.e., the variation in

predictions across the set of climate models). Beyond about fifty years, emissions scenario

uncertainty takes over. That is, the policies we ultimately choose drive the uncertainty in the

long run.
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Spatial Dependence of Uncertainty

The effect of CO2 concentrations on global average temperatures is one of the best understood

relationships in climate change science. In a hierarchy of increasing uncertainties, climate

sensitivity and global mean temperatures are somewhere near the top. However, if we shift

our attention to smaller spatial scales, impacts that are localized in time, and less well under-

stood climate variables (e.g., precipitation), uncertainties explode.

Masson and Knutti (2011) have analyzed the dependence of uncertainty in climate predic-

tions on spatial scale. Their results (see Figure 3) show how disagreement between models

grows with reductions in spatial scale for both temperature (left panel) and precipitation (right

panel). The parameter l (on the horizontal axis) indicates the scale at which the data from

models are averaged—the higher the value of l, the more the fine spatial detail in the models is

lost, and the more the model predictions at each geographic location look like spatial averages

over regions of size l. The more spatial averaging is applied, the more the models agree with one

another. Masson and Knutti show that the models’ ability to reproduce past observations has a

similar dependence on spatial scale.

These results concern only predictions of climate variables themselves. If one continues down

the ladder of uncertainty to specific localized predictions of variables that directly affect eco-

nomic and natural systems (e.g., water availability, growing conditions, sea level rise, and

extreme events), matters get even more vague. This suggests that when considering various

climate policy options, whether they be mitigation or adaptation, uncertainty and its manage-

ment are going to be major factors.

Taking a broad view of the scientific models, it is clear that our knowledge is most certain for

coarse aggregate statistics such as climate sensitivity, that the main contributors to uncertainty

Figure 2 Sources of uncertainty in temperature predictions as a function of lead time. Source: Hawkins

and Sutton (2009). �American Meteorological Society. Used with permission.

Notes: The top, middle, and bottom areas denote initial condition uncertainty, emissions scenario uncer-

tainty, and model uncertainty, respectively.
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in predictions are different for different lead times, and that uncertainty increases rapidly as we

move from predicting aggregate variables to predicting spatially and temporally localized vari-

ables. Is there a chance that this uncertainty will be reduced dramatically in the near future?

Despite the considerable advances in methods, data, and modeling that have been made over

the past few decades, this seems unlikely (Knutti and Sedlacek 2013). Indeed, most uncertainties

have not been significanly reduced over the last two decades (Knutti and Hegerl 2008). This

suggests that the passage of time is unlikely to radically improve the data available to decision

makers. Thus the climate policies we choose today and in the near future will have to be based

on our current uncertain estimates.

Sources of Socioeconomic Uncertainty

Sources of socioeconomic uncertainty can be broken down into empirical uncertainty—i.e.,

lack of knowledge about climate impacts and future technologies—and normative disagree-

ments about the values of key welfare parameters. In the balance of this section we review the

empirical uncertainties and their interactions with scientific uncertainties, and then we discusss

how differences in value judgments complicate economic analysis of climate policy.

Introducing Socioeconomic Uncertainty

Even if all scientific uncertainty were resolved, we would still face major uncertainties stemming

from the socioeconomic dimensions of climate change. Suppose that all scientists agreed on

both a climate model and the impacts of climate change on sea level rise, fresh water availability,

and so on. Even in this case they would not be able to forecast the future climate because this

Figure 3 The spatial dependence of uncertainty in climate model predictions. Source: Masson and Knutti

(2011). �American Meteorological Society. Used with permission.

Notes: � represents the scale of spatial averaging of model predictions. Panel a shows the spread, over the

suite of climate models used by the IPCC in its fourth assessment report of spatially averaged predictions of

changes in surface temperature for several twenty-year time periods. Panel b shows the same for

precipitation.
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requires knowing future emissions. We are far from being able to forecast future emissions

because they depend on whether technological change provides us with new ways of reducing

GHG emissions, and the policies chosen, which are themselves difficult to forecast.

Even if future emissions were known, the future would still be unknown in many important

ways. Take the case of sea level rise, for example. Let’s suppose we had an accurate forecast of

sea levels for the next century. How would societies react to rising seas? By protecting

settlements or moving them? Would movements occur in a peaceful and organized manner,

or would there be strife and dislocation? In a similar vein, let’s consider agriculture. Suppose

we know how much future food outputs will fall in response to climate stress. What would

the economic consequences of this decline be? Would the poor carry the burden or would

it be shared? Another example concerns the fate of small island states whose land is within 10

feet of sea level: it is highly likely that these islands will be uninhabitable by the end of this

century. How will the global community react? Will it address the refugee problem, and what

compensation will be offered? Clearly the answers to these types of questions will affect the

welfare costs and distributional impacts of climate change. Thus even the full resolution of

scientific uncertainties would leave huge residual uncertainties about the costs of climate

change.

Estimates of Uncertainty in Socioeconomic Impacts

There are a limited number of econometric studies of the impacts of climate on socioeconomic

systems (Burke et al. 2009; Dell, Jones and Olken 2008; Deschenes and Greenstone 2007; Fisher

Hanemann and Schlenker 2012; Mendelsohn Nordgaus and Shaw 1994; Schlenker Hanemann

and Fisher 2005; Schelnker and Lobell 2010), with their main focus being on agriculture,

although there has also been some work on conflict and economic growth. The uncertainties

associated with the regressions in these studies are measures of impact uncertainties: all of the

studies use cross-section or panel data to estimate how climatic conditions affect economic

outcomes (given today’s technologies). By and large, the findings suggest that climate change is

likely to be damaging, with negative impacts on agricultural yields, the frequency of civil

conflicts, and economic growth rates (see the survey by Dell, Jones, and Olken 2013).

Scientific and socioeconomic uncertainties interact, and accounting for their interaction is

essential for developing plausible estimates of the effects of climate change on social and

economic systems. Such an end-to-end approach is rare in empirical work. An interesting

exception is the article by Burke et al. (2011) that examines the seven studies of the economic

impact of climate change cited earlier. Most of these studies use just one climate model to

generate predictions about impacts. However, the IPCC uses more than twenty models for its

predictions of climate change. In order to reflect the variation in scientific estimates, Burke et al.

(2011) reestimate the socioeconomic impacts in these seven studies using a full range of climate

models. They find that this increases the 95% confidence intervals around the central estimates

of outcomes by as much as a factor of five and also changes the central estimates themselves.

They also argue that failing to account fully for scientific uncertainty results in underestimates

of the thickness of the tails of the error distributions, which, in conjunction with the increased

confidence intervals, greatly increases the probability of extreme outcomes. Economists have

recently focused on the importance of extreme outcomes in policy evaluation (Millner 2013;
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Weitzman 2009), suggesting that the possibility of such extreme outcomes may have a dispro-

portionate impact on policy choices.

Technological Uncertainty

Technology determines the scale and carbon intensity of our economic activities. This means

that technical change will alter the energy mix of the economy in the future, and thus to a large

extent determine how much CO2 we emit. A good example of how technical change affects the

carbon intensity of economic activity can be seen in the rapid growth of hydraulic fracturing in

the United States, which between 2002 and 2012 pushed down the price of natural gas from $12

to less than $4 per mmBTU, thus replacing coal and reducing US GHG emissions (Energy

Information Agency 2013). Such a change would have been hard to imagine even ten years ago.

This illustrates the importance of technological uncertainty and the fact that there are many

potential developments that could make it easier to reduce GHG emissions or adapt to the

consequences of climate change.

Technical change also influences the level of economic output and the growth path of the

economy as a whole. Thus technology affects both our demand for energy and how rich we will

be in the future. Much of the extraordinary economic growth that has occurred since the

Industrial Revolution can be traced to the productivity enhancing effects of technological

innovations (Phelps 2013). But we cannot be sure that past progress is a good predictor of

future trends (Gordon 2012). In general, we have no theory of technical change that can reliably

forecast long-run economic growth rates. This is unsettling because the growth rate of the

economy strongly influences the discount rate, which has been shown to be a major driver of

climate policy recommendations, as reflected in the debate between Stern and the critics of his

2006 report (Nordhaus 2007; Weitzman 2007).

Uncertainty and Disagreement about Discount Rates

Discount rates allow us to aggregate costs and benefits that are distributed across time. This is a

vital task for assessing climate policies because they usually have short-run costs but long-run

benefits that accrue mainly to future generations. Calculating discount rates requires us to

account for both empirical uncertainties and normative disagreements about the values of

welfare parameters.

Empirical uncertainties in the discount rate derive largely from uncertainty about the future

growth rate of the global economy. The rate of economic growth enters the discount rate

through the Ramsey formula, which breaks the discount rate r into two components: one

that depends on how much weight we give to the welfare of future generations (the pure

rate of time preference d) and one that depends on aversion to inequality in consumption

between generations (the product of the elasticity of the marginal utility of consumption Z and

the consumption growth rate g): r¼ d+Zg. Hence if there is uncertainty about future eco-

nomic growth rates g, then there is also uncertainty about how to discount future changes in

consumption (Arrow et al. 2012; Gollier 2012) and thus the benefits of climate policy.

Weitzman (2001) presents a novel methodology for arriving at the discount rate. He notes

that different economists recommend different discount rates and suggests that we view these

rates as independent estimates of the true underlying rate, which is uncertain. More specifically,
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he suggests combining these estimates by taking a weighted average of their implied discount

factors, with the weights being the frequency of the individual discount rates in the population.

As the Ramsey formula shows, however, people’s estimates of the discount rate combine em-

pirical forecasts of the growth rate g with their personal welfare parameters (i.e., their rate of

time preference and elasticity of marginal utility). Differences in welfare parameters reflect

fundamental disagreements about how to measure welfare and are distinct from empirical

uncertainties. This subtle distinction has important consequences for how we compute discount

rates. In particular, if people have different preferences we need to aggregate them in some way

in order to identify social preferences that are representative of the population overall.

Gollier and Zeckhauser (2005) and Heal and Millner (2013) pursue this point further and

consider how groups should discount the future when different people have different pure rates

of time preference. That is, how can we combine these different value judgments into a rep-

resentative discount rate? One option would be to view this as a social choice problem, and

consider reconciling these disagreements about values through a process such as voting. In this

case, the outcome would likely be that the median rate of time preference should be used to

compute the discount rate. Another option would be to use a more traditional economic

approach that seeks to maximize a weighted sum of the diverse agents’ welfare, and at the

same time asking whether there is a representative agent who can stand in for the group. It can

be shown that such a representative agent’s rate of time preference declines with time (and

approaches the lowest rate in the population asymptotically). Gerlagh and Liski (2012) and

Heal and Millner (Forthcoming) show that a declining pure rate of time preference has a

substantial effect on climate policy choices.

In summary, the discount rate is determined by empirical factors that are difficult to forecast

and welfare parameters whose values are likely to be contested.

Challenges of Modeling Uncertainty

When it comes to modeling uncertainty, most economists instinctively reach for the expected

utility framework of von Neuman and Morgenstern (1944), which assumes a well-defined set of

possible states of the world, some exogenously given probability distribution over these states,

and preferences over uncertain choices that can be represented by expected utilities. We will

argue that there are several characteristics of the climate problem that may make it a poor match

for the expected utility paradigm.

The first challenge to representing uncertainty in climate models is that we do not have a

good picture of all the possible states of the world. One very concrete example of this is the

possible disruption of the thermohaline circulation in the Atlantic Ocean, potentially a serious

consequence of climate change. Although such a consequence is now believed to be unlikely, it

was not even recognized as a possibility until the 1990s (Broeker 1997), suggesting that even

today there may be consequences of climate change that we have not considered.

A second challenge is that there is not a generally agreed-upon objective probability

distribution over the possible consequences of climate change. Our discussion of Figure 1

demonstrates that this is a problem even for one of the best understood quantities in climate sci-

ence: the climate sensitivity parameter. It is thus difficult to know how to construct the objective

probability distribution that the von Neumann-Morgenstern framework requires. Given these
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difficulties, we are led to ask more fundemental questions: Can a unique probability distribu-

tion be used to represent our uncertain knowledge, and does rational policy analysis require

such a distribution as an input?

Subjective Expected Utility

The traditional answer to these questions draws on a fundamental result of decision theory.

This is Leonard Savage’s theory of subjective expected utility (SEU) (Savage 1954), which is

even more important than von Neuman and Morgenstern’s result but is perhaps less familiar to

applied economists. The SEU framework provides the theoretical justification for the Bayesian

methods economists have usually used to model the uncertain effects of climate change (e.g.,

Weitzman 2009). Savage’s results are much more general than those of von Neuman and

Morgenstern. He considers preferences over “acts” (which economists might interpret as

policies) that map states of the world into outcomes. For example, the “Buy an Umbrella”

act may map the “rain” state into the “happy to be dry” outcome, and the “sun” state into the

“irritated to be carrying an unneeded umbrella” outcome. Savage states plausible axioms for

preferences over acts, and he proves that preferences that obey his axioms can be represented by

expected utilities over a subjective probability distribution over the possible states. The remark-

able thing about Savage’s result is that it derives utilities and subjective probabilities from basic

choice axioms. In contrast to the von Neuman-Morgentern framework, SEU theory does not

assume the existence of unique probabilities. Rather, they are derived endogenously in the

result. Thus if one accepts Savage’s axioms, the problem of modeling uncertainty, and making

rational decisions when faced with it, is solved in one fell swoop. Even if our information is

ambiguous, in fact even if we have no information at all, it is rational to represent our know-

ledge with some subjective probability distribution, and choose the action that maximizes

expected utility given some utility function. From this perspective, it does not matter where

our probabilities come from, so long as there are some!

Challenges to the SEU Framework

Although SEU theory provides a neat one-size-fits-all solution to the problem of decision

making under uncertainty, is it the right solution in all situations? This issue has been hotly

debated since the theory’s inception. Savage himself saw limits to his theory, cautioning us to

use it only in “small worlds.” in which it is possible to “look before you leap” (Binmore 2009).

Even before Savage, eminent theorists questioned the ability of the probabilistic framework to

capture our knowledge when information is incomplete, inconsistent, or nonexistent (Keynes

1921; Knight 1921). The most famous challenge to the SEU theory’s claim to define rational

choice came from Daniel Ellsberg’s hypothetical choice experiments (Ellsberg 1961), which

revealed that when we have no information on which to base decisions, we may violate one of

Savage’s key axioms: the “sure thing principle.”3 In essence, Ellsberg’s results show that many

people treat objectively known risks (e.g., the chance of a fair coin landing on “heads”) very

differently from “unknown” uncertainties (e.g., the chance of a coin with an unknown bias

3See Gilboa (2009) for a detailed discussion of Savage’s axioms and the Ellsberg thought experiments.
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landing on “heads”). Many of us are ambiguity averse, preferring to bet on known risks rather

than uncertain prospects,4 even if, from a subjective probability standpoint, these two situations

are indistinguishable (Camerer and Weber 1992; Slovic and Tversky 1974).

Just because many people are ambiguity averse, it does not follow that ambiguity aversion is

rational and should be a part of normative policy analysis. In fact, many economists interpret

Ellsberg’s (1961) results as a contribution to behavioral economics, grouping it with other

behavioral “mistakes” (e.g., Sims 2001). Ellsberg, however, viewed his work in a normative

light (Ellsberg 2001). Subsequently, eminent decision theorists have argued that SEU theory is

not universally applicable (Binmore 2009), that subjective probabilities cannot always capture

our state of knowledge (Gilboa et al. 2008), and that ambiguity aversion can be rational when

our information is of poor quality (Gilboa et al. 2009). Our view of this debate is that, much like

the debate about the appropriate values of welfare parameters, it is something about which

reasonable people can reasonably disagree.5 There is unlikely to be a knockdown argument that

determines whether ambiguity aversion is a behavioral anomaly or a rational response to

uncertainty, and both positions contain valuable insights into how we might want to make

choices under uncertainty.6 From this perspective, the problem of decision making under

uncertainty takes on a new social choice dimension. That is, there are many different legitimate

preferences, of which some are consistent with SEU theory and some are not, and policy

analysis should pay attention to them all. This suggests that it is important to explore alterna-

tives to the standard SEU paradigm because these will form part of any comprehensive ap-

proach to designing climate policy in the face of uncertainty.

Alternatives to Expected Utility

Over the past two decades, there has been an explosion of activity in formal approaches to

decision making under uncertainty, beginning with the seminal work of Schmeidler (1989) and

Gilboa and Schmeidler (1989).7 This section reviews several alternatives to the standard ex-

pected utility approach to decision making under uncertainty, explaining the ideas underlying

them and investigating whether they provide an appropriate framework for policy choice in the

climate context.8 Where possible, we also provide examples of how they have been applied in

climate change economics. There are two types of approaches. One assumes no probabilistic

4Millner et al. (2013a) have adapted Ellsberg’s experiments to show that some climate scientists’ beliefs about
the value of climate sensitivity cannot be captured by subjective probabilities.
5A special issue of Economics and Philosophy, 25, no. 3 (2009), is devoted to an exchange of views on this topic.
6This is true even though these insights may be mutually inconsistent. The tension between the twin virtues of
“consistency” (SEU) and epistemic sensitivity (ambiguity approaches) parallels similar tensions between fun-
damental values in ethics (e.g., between freedom and equality). The philosopher Isaiah Berlin famously argued
that this is a fundamental property of value systems (Berlin 1969). We just have to live with the fact that
different, equally legitimate, values may come into conflict. This lesson seems to be just as applicable to ques-
tions of rationality.
7Etner et al. (2012) provides a comprehensive review of these approaches.
8In our discussion, “model” and “distribution” are used interchangeably. That is, for us, a model “maps”
policies (e.g., GHG emissions) to distributions over outcomes. For example, Figure 1 represents twenty such
“models,” each of which maps a doubled CO2 concentration to a probability distribution over the equilibrium
climate sensitivity.

130 G. Heal and A. Millner

 at C
olum

bia U
niversity L

ibraries on July 9, 2014
http://reep.oxfordjournals.org/

D
ow

nloaded from
 

http://reep.oxfordjournals.org/


information at all, and the other, known as the multiple priors approach, recognizes that many

probability distributions are consistent with what we know and seeks to work with all of them.

Nonprobabilistic Approaches

The first approaches we examine—a-maxmin, and minmax regret—are nonprobabilistic,

which means they require no likelihood information. This is a plus in situations where such

information is not available, but a minus if it is, because these approaches ignore information

that could be valuable in policy selection. This suggests that such approaches may be more

appropriate for studies on a local scale where climate predictions are least informative. Such

small-scale studies are natural in the context of adaptation to climate change, where location-

specific policies are often needed.

Maxmin decision rules

The �-maxmin decision rule ranks policies according to a weighted average of their worst and

best outcomes. The parameter � determines how much weight the decision maker gives to a

policy’s worst outcome, with 1�� being the weight given to the policy’s best outcome. This

parameter could be viewed as representing aversion to a lack of knowledge, with all the weight

on the minimum (a¼ 1) implying extreme concern for ambiguity and all the weight on the

maximum (a¼ 0) implying a lack of concern about ambiguity. The �-maxmin criterion was

derived axiomatically by Arrow and Hurwicz (1977) as a criterion for choice under “ignorance”

(i.e., when no information is available). It is the least informationally demanding of the decision

criteria. No probabilistic information is needed to implement this approach; all we need is a

ranking of outcomes.

The special case of a¼ 1 is called the maxmin rule. It was suggested long before Arrow and

Hurwicz’s work (Wald 1945). This rule requires us to pick the policy whose worst possible

outcome (min) is the least bad (max). An interesting application of this rule to climate change is

provided by Woodward and Bishop (1997), who simulate alternative policies in Nordhaus’s

DICE integrated assessment model of climate policy (Nordhaus 2008) for two alternative

climate scenarios: a catastrophic scenario and a scenario that corresponds to Nordhaus’s

base case. They allow for the possibility of learning and revising policy choice in 2085, and

find that the best policy according to the maxmin rule is to assume the catastrophic scenario to

be correct and optimize for this, altering course later if the base case emerges as the correct

worldview.

Minmax regret

The minmax regret rule, advocated by Savage (1954), has many similarities to the maxmin rule.

The regret of an action a(s) in state s is given by the difference between the value of the best

possible outcome in that state and the actual outcome. Minmax regret instructs us to choose the

action we regret least over all states of the world. The key here is that rather than focusing on

the worst outcome, you focus on how much better off you could have have been (this is the

“regret”) and try to come as close as possible to doing as well as possible over all states of the

world. The focus on missed opportunities, rather than worst cases, makes this decision rule less

conservative than the maxmin rule. This approach has been used in a number of computational
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studies of decision making that seek to find policies that are robust to a broad range of future

scenarios (e.g., Lempert et al. 2006).

Multiple Priors Approaches

A second class of alternatives to the expected utility framework is based on the idea that if the

world is not kind enough to provide us with a unique probability distribution over states, then

there must be many different probability distributions that are consistent with what we know:

that is, we have multiple priors. The idea is to use all of these distributions and weight them in

some way. Because decision rules based on multiple priors make use of likelihood information,

they are naturally more complex than the nonprobabilistic approaches discussed in the previ-

ous section. This section summarizes the maxmin expected utility approach, the smooth am-

biguity approach, and the multiplier preference approach to decision making with multiple

priors.

Maxmin expected utility approach

The oldest of the multiple prior approaches, and in many ways the simplest, is the maxmin

expected utility rule (Gilboa and Schmeidler 1989). The first step in implementing this ap-

proach is to identify all distributions (or “priors”) that are consistent with what is known.

Policies are then ranked according to their lowest expected utility over this set of possible

distributions. This means that for each policy we find the distribution that gives it the worst

expected outcome and evaluate policies based on these worst cases. Thus this approach focuses

on “bad distributions.” As with all of the multiple prior approaches we will review here, there is

no assumption of a unique probability distribution, and we can have incomplete probabilistic

information that is compatible with many different distributions. Figure 1 illustrates such a

situation for climate sensitivity: the data there are consistent with many but not all probability

distributions. With this approach, if you do not know what the probabilities are, you ask “what

probabilities are consistent with what I do know?”, and then use all of these probabilities.

What this approach does not do, however, is rank the possible distributions in any way; it

simply focuses on the worst case. Thus this approach reflects extreme ambiguity aversion—we

are very strongly averse to the spread in expected utilities across the set of different probability

distributions. In practice, however, we may not want to be so cautious and instead may prefer to

reflect the fact that some distributions are more plausible than others. We next discuss the

smooth ambiguity model, an approach that allows us this freedom.

Smooth ambiguity model

In the smooth ambiguity model (Klibanoff Marinaci and Mukherji 2005) there are again many

possible distributions consistent with what we know, but in this case we assign a subjective

weight to each distribution. We then use each of the possible distributions to evaluate a policy,

and we combine these evaluations into a single value using the subjective weights of the dis-

tributions and a flexible measure of ambiguity aversion.

The smooth ambiguity approach allows us to use all of the likelihood information contained

in the possible distributions. But in order to do this we need to specify weights for each

distribution, and these weights reflect information that is very different from the distributions
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themselves. The weights are subjective judgments, whereas the distributions are generally con-

sidered to be “objective” (i.e., informed by data). The smooth ambiguity model recognizes the

necessity of such subjective judgments, in much the same way as the standard SEU framework.

However, unlike the SEU framework, the smooth ambiguity model allows us to treat these two

kinds of information very differently. That is, by introducing ambiguity aversion, this model

preserves the distinction between subjective and objective judgments.

Millner, Dietz, and Heal (2013b) present a model that illustrates the maxmin expected utility

and smooth ambiguity approaches. They assume multiple scientific models (such as those in

Figure 1), each of which can be used to evaluate a policy. Each individual model, in conjunction

with a policy choice, predicts a distribution of consumption levels, enabling us to compute an

expected utility for that policy-model combination.

MDH find that the introduction of ambiguity aversion can increase or decrease the optimal

level of GHG abatement: the key is whether models that show a high payoff from abatement

(in expected utility terms) also have a high marginal payoff. Their dynamic simulations show

that for the DICE model, aversion to ambiguity about the distribution of climate sensitivity

increases the welfare benefits of mitigation, in some cases dramatically. In the extreme case,

where aversion to ambiguity is very large, the model reduces to the maxmin expected utility

model.

Multiplier preferences approach

The final multiple priors approach we consider is the multiplier preferences approach, intro-

duced by Hansen and Sargent (2007) and used increasingly widely in macroeconomics.

Macroeconomists have recognized that it is not possible to know the true evolution of the

economy and that as a result they must contend with multiple possible models. In this sense, the

challenges they face are similar to those faced by economists concerned about climate change.

Under the Hansen and Sargent (2007) approach, the analyst chooses a best guess distribu-

tion but is not sure that this distribution is correct, and so allows for possible model misspe-

cification, again by allowing for a set of possible distributions. To evalute a policy, the

analyst computes its expected utility for each of these distribution and adds to this a penalty

term that depends on how “close,” in a statistical sense, a given distribution is to the best guess.

The further a distribution is from the best guess, the bigger the penalty. Policies are then

evaluated by taking the minimum over all distributions of this sum of the expected

utility and penalty terms. Thus since distributions that are far away from the best guess are

penalized, there is a trade-off between identifying the policy that maximizes the minimum

expected utility over all distributions and identifying a policy that does well under the best guess

distribution.

The multiplier preferences approach makes sense if there is a clearly preferred model that we

can use to describe our uncertainty but we are not sure about some of its details—in other

words, if there is a possibility of model misspecification. However, if there are several rather

different models that are all serious candidates for the “best” model, then this approach is not

so attractive. It may be a good approach for macroeconomists who think they more or less

know the true model and only need to consider small variations around it, but it is not clear that

it is appropriate for climate change. As with maxmin expected utility, this approach ignores

likelihood information and simply ranks priors by their closeness to our best guess.
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Xepapadeas (2012) has applied the Hansen-Sargent multiplier preferences approach to cli-

mate problems. He considers a model in which output produces a pollutant, which could be a

GHG, according to a stochastic process, but we are not sure exactly which process it is.

By applying the Hansen and Sargent framework, Xepapadeas solves for optimal emissions

policies that account for model misspecification and demonstrates a “cost of robustness”:

the larger the set of distributions to which our policies have to be robust, the lower their

expected payoffs.

Conclusions

This article has reviewed the sources of uncertainty about climate change, methods of repre-

senting them, and alternatives to the expected utility approach to decision making under

uncertainty. What can we conclude from this survey? First, it is clear that uncertainty is here

to stay. Although we are constantly making incremental progress, it seems unlikely that our

knowledge about the scientific and socioeconomic consequences of climate change will radic-

ally improve over the next few decades. However, considerably more could be done to effect-

ively characterize our uncertainty about socioeconomic impacts. End-to-end analyses, which

integrate uncertainty in both climate science and climate impacts estimates, should be an

important part of such efforts. Point estimates of impacts based on projections from a single

climate model are not particularly informative. We also have to recognize, however, that many

of the most important empirical uncertainties, such as those about future abatement technol-

ogies, the long-run growth path of the global economy, and the adaptability of future societies

to an altered climate, are fundamentally unknowable. We simply do not have credible tools for

making such predictions.

Second, although the nature and extent of these uncertainties could lead to policy paralysis,

we believe this would be a big mistake. We have more than enough information about climate

change to understand that it is a serious problem that requires immediate policy attention:

uncertainty does not imply ignorance. Our job as economists is to assess the welfare conse-

quences of climate policies as best we can and provide analytical tools that can be used to inform

policy choices. However, the methods that we use to evaluate small-scale projects with well-

defined, short-run consequences are unlikely to be appropriate for a problem as global, long

run, and uncertain as climate change. This offers us an opportunity to develop an inclusive and

creative approach to policy analysis that incorporates a variety of viewpoints. As illustrated by

the debate about discounting, the decision tools and welfare parameters we use to evaluate

policy can have as much of an effect on policy recommendations as the data themselves. This is

no less true when thinking about how to incorporate uncertainty into our models: different

approaches can lead to radically different policy recommendations.

The survey of the decision theory literature we have presented here indicates that there are

many promising approaches to decision making under deep uncertainty that provide new

methods for representing our information about the nature and impacts of climate change,

and allow us to make policy recommendations that account for the limitations of our know-

ledge. When combined with empirical inputs that represent both what we do and do not know,

such tools could provide useful policy guidance. It is important to recognize, however, that the

world is under no obligation to agree with our models. We must expect the unexpected and
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heed Mark Twain’s warning: “It ain’t what you don’t know that gets you into trouble. It’s what

you know for sure that just ain’t so.”
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