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 Optimal Growth with Inter-

 temporally Dependent Preferences12
 HARL E. RYDER, Jr.

 Brown University

 and

 GEOFFREY M. HEAL

 University of Sussex

 1. INTRODUCTION

 In the literature on optimal economic growth, considerable effort has been devoted to the
 analysis of models using a preference function which depends additively on consumption
 at the various dates within the planning period. The typical formulation is that used by
 Cass [2]:

 J[c( )]-J e-tu[c(t)]dt, ...(1)

 where 6 > 0 is an exponential discount factor, c(t) is the current consumption level at date t.
 Koopmans [10] has shown that this formulation of the preference function is implied by
 certain assumptions of existence, continuity, sensitivity, stationarity, boundedness and
 independence. Hicks [8, p. 261] has identified independence as the key assumption, arguing
 that it is counter-intuitive. Instead, he claims that there is normally a strong complement-
 arity between consumption at successive moments. This view is widely held, but seldom
 practiced " because we do not know how to specify [complementarities] in an analytical
 manner which would be deemed adequate to the problem ". [3, pp. 340, 341]. The object
 of this paper is to investigate the effect of using a model of the sources of consumer satisfac-
 tion that is possibly more realistic than the usual formulation of equation (1). The essential
 point is that it introduces into the utility function a new variable, z, which may be inter-
 preted either as the customary level of consumption, or as the expected level of consumption.
 Instantaneous satisfaction then depends both on instantaneous consumption and on the
 customary or expected consumption level. The justification for including such a variable is
 obvious: it is that the amount of satisfaction that a man derives from consuming a given
 bundle of goods depends not only on that bundle, but also on his past consumption and on
 his general social environment.3

 This approach has considerable intuitive plausibility: but if further justification is
 needed, then it is easily found. For example, it is not uncommon for sociologists concerned
 with political changes during economic development to remark that a period of historically
 high consumption levels followed by a drop in consumption is more likely to cause social

 1 First version received June 1972; final version received August 1972 (Eds.).
 2 The genesis of this paper is somewhat unusual, since the authors did not learn of each other's work

 until both had submitted finished drafts for publication [7, 17]. We have chosen to combine our papers in
 order to eliminate duplication and present our subsequent joint results. We gratefully acknowledge financial
 support from the Ford Foundation and the National Science Foundation and helpful discussions with
 Kenneth Arrow, Tony Atkinson, Christopher Bliss, Partha Dasgupta, Clifford Hildreth, Ettore Infante,
 Tjalling Koopmans, Bill Nordhaus, Joseph Stiglitz and each other.

 3 Von Weizsacker [23] has recently explored a different aspect of this phenomenon.
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 2 REVIEW OF ECONOMIC STUDIES

 discontent than is a period of uniformly low consumption levels: in the former case, the
 period of high consumption builds up high customary or expected consumption levels, and
 the decline, though it may be to levels that are historically high, produces a sharp fall in
 satisfaction. Davies, in [6, p. 6], stresses that this is a factor contributing to the incidence of
 revolutions.'

 The general proposition that a man's attitude towards his present economic circum-
 stances is conditioned, inter alia, by his past experience working through his expectations,
 is one that is also endorsed at length by Katona in his analysis of psychological aspects of
 economic behaviour [9, Chapter 4 on " Past Experience and Expectations "].

 2. THE BASIC MODEL

 To formalize the notions discussed above, the variable z(t) is defined by

 t

 z(t) = pe-Pt eP c(T)dT, ..(2)
 - 00

 where p>0 and c(T) is the average level of per capita consumption in the community at
 time z. z(t) is thus a weighted average of past consumption levels, with the weights declining
 exponentially into the past. The larger is p, the less weight is given to past consumption in
 determining z(t), and vice versa. It is the variable z(t) that is regarded as the customary or
 expected consumption level at time t. In setting up a formal model for the study of individ-
 ual behaviour, it would clearly be desirable to make z(t) depend not only on the individual's
 past experience, but also on the consumption habits of those with whom he might compare
 himself. However, in dealing with aggregate figures in a national planning problem, this
 consideration carries less force: perhaps one ought to make z(t) depend on the consumption
 standards current in other countries with which nationals of the country concerned might
 have contact, but for the sake of simplifying an already complex problem this embellishment
 is omitted.2

 Our criterion assumes the form
 00

 J(c( )) J e5tu[c(t), z(t)]dt. ...3

 This form of criterion functional is specific enough to obtain some definite results, while
 permitting the marginal utility of consumption at a particular date to vary with past and
 future consumption.

 We shall make a few preliminary assumptions on the momentary utility function
 u[c(t), z(t)].

 (P. 1) uc(c, z) >0. An increase in current consumption with no change in past consump-
 tion will increase utility.

 (P. 2) uz(c, z) _ 0. An increase in past consumption with no change in current consump-
 tion will not increase utility and may cause it to fall.

 1 To be sure, there are many outbreaks of social discontent to which his explanation cannot be applied
 (for example, those documented by Cohn [5]): but the evidence that he produces suggests that expectations
 produced by past experience may be an important factor in determining social satisfaction. There is a distinct
 and equally influential analysis of the causes of outbreaks of social discontent, first propounded by de
 Tocqueville and echoed by Cohn [5]. It is most aptly summarized by its progenitor on [19, p. 214]. Davies'
 explanation suggests that expectations are formed from past experience by some simple extrapolation,
 whereas de Tocqueville's suggests a more complex relationship in which the elasticity of expectations with
 respect to recent experience may at certain crucial stages of development be very great indeed. In the model
 that follows, there is no attempt to give expression to this more complex set of possibilities.

 2 In fact, it would not be difficult to make at least some concession towards including it. If consumption
 standards in other countries were growing steadily at say four per cent per annum, then an upward trend at
 this rate could be included in z.
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 RYDER JR. & HEAL OPTIMAL GROWTH 3

 (P. 3) uc(c, c) + uz(c, c) > 0. An increase in a uniformly maintained consumption level will
 increase utility.

 (P. 4) ucc(c, z) <0, ucc(c, Z)uzz(c, Z)_-[uz(c, Z)]2 > 0. Momentary utility is concave in-c
 and z, strictly concave in c.

 (P. 5) lim uc(c, z) = oo uniformly in z; lim [uc(c, c) + uz(c, c)] = oo
 c-O c-o

 In Section 4 below, we shall relax the assumption (P. 3) of non-satiation. We may note that
 our criterion reduces to the independent case if uz(c, z) = 0.

 The basic model of the economy which we shall adopt is the familiar neoclassical model
 used by Cass [2]. We assume one good, two factors, constant returns to scale, exogenously
 and exponentially growing labour force, stationary technology, exponential depreciation,
 and Inada conditions. In short, we have

 k = f(k)-Ak-c., ... .(4)
 0 < c <f(k), ... (5)

 where c is consumption per worker, k> 0 is the capital-labour ratio, A > 0 is the sum of the
 growth rate of the labour force and the depreciation rate of capital, andf is the production
 function. The production function satisfies

 (T. 1) f(k)>0,f'(k)>, f"(k)<0 for all k>0, and limf(k) = 0, limf(k) = oo,
 k-0 k- oo

 (T. 2) limf'(k) = oo, limf'(k) = 0.
 k-0 k- oo

 Differentiating equation (2) with respect to time, we obtain a differential equation for z,

 z = p(c-z). ...(6)

 At the planning date, t = 0, we are faced with historically given endowments of capital
 ko > 0 and past consumption z0 > 0. Thus we have the following problem of optimal control.

 We wish to choose a consumption path c(t), t ? 0 that will maximize

 J[c(-)] = f e`tu[c(t), z(t)]dt ... (3)

 subject to
 k- f(k)-~ak-c ...4

 0 < c ? f(k) * (5)
 z = p(c-z) ... (6)

 z(O) = zo > 0, k(O) = ko > 0. ... (7)

 3. COMPLEMENTARITY OVER TIME

 To discuss marginal utilities and marginal rates of substitution between consumptions at
 various dates, we must use the concept of the derivative of a functional. This concept was
 worked out by Volterra [20, p. 23], and may be explained as follows.

 We wish to measure the increment in J[c(.)] resulting from a small increment in con-
 sumption near date t1. Let c'( ) be an infinite consumption stream satisfying

 C'(t) = c(t) for t ? t- P, t _ t + 2

 .(8)

 | C'(t)-c(t)| <oc for t1-P < t<tl+
 2 2
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 4 REVIEW OF ECONOMIC STUDIES

 Either c'(t) > c(t) or c'(t) ? c(t) for all t. Let

 a) (t2+P/2
 e = J [c'(t)-c(t)]dt= J [c'(t)-c(t)]dt. ...

 -a)0 ti -f/2

 Then s e < ocB. (See Figure 1.) The Volterra derivative of J is

 J'[c(); t1] limrJ[c( )- J[c( . ... (10)

 4  ~~ c(t) t

 FIGURE 1

 Volterra derivative.

 The Volterra derivative is itself a functional which may be differentiated in the same way to
 obtain second and higher Volterra derivatives, J "[c(*); t4, t2]. When welfare is a functional
 of a continuous stream of consumption, the marginal utility of consumption at date t1 is
 the Volterra derivative J'[c( ); t1]. The marginal rate of substitution between consumption
 at dates t1 and t2 is the ratio of marginal utilities,

 R[c( ), t1, t2] = J'[cC(); t1]

 If there is a small increment to consumption at date t3, the effect on the marginal rate at
 substitution between t1 and t2 is another Volterra derivative,

 R'[c( ), tl, t2; t3]

 = (J'[c( ); t2]J"[c( ); t1, t3]-J'[c( ); tl]J"[c(j); t2, t3])/(J'[c( ); t2])2 ...(12)
 If R'[c(*), t4, t2; t3] >0, a small increment at t3 shifts preferences from t2 to tl . In

 this case we would have complementarity between t3 and t1. If R' <0, the increment at t3
 shifts preferences from t1 to t2, giving us a complementarity between t3 and t2. If R' = 0,
 an increment at t3 does not affect preferences between t, and t2. This would be the case for
 all c( ), t1, t2, t3 if the preference functional is intertemporally independent. It should be
 noted that complementarity, as defined here, is different from complementarity in the
 Slutsky sense.

 Taking derivatives of the functional defined by equations (3) and (2), we obtain for
 t2>tl >0

 J'[c(-); tl] = e-tluc[c(ti), z(t1)] +pePtl e-(P+5)tuz[c(t), z(t)]dt. ... (13)

 J"[c( * ); tl, t2] = pePtl - (P +5)t2Ucz[c(t2), Z(t2)]

 + p2 eP(t +t2) e- (2p +5)tuzz[c(t), z(t)]dt. ... (14)

This content downloaded from 128.59.222.107 on Mon, 28 Aug 2017 22:06:54 UTC
All use subject to http://about.jstor.org/terms



 RYDER JR. & HEAL OPTIMAL GROWTH 5

 Since the expressions obtained by substituting (13) and (14) into (12) are too compli-
 cated to be of much help, let us examine in particular the values obtained along a constant
 consumption path c(t) = z(t) = z(0) for all t. In that case uc,, uz, ucz uzz become constants.
 Now we have for t2>tl >0

 J'[c; tl] = e&5t1 [c u. .. .(15)

 J"[c; t1, t2] = pePtl-(P+)t2 LUcz + 2P Uzz. ..(16)
 Under assumption (P. 3) we have J'>0. Substituting (15) and (16) into (12), we obtain

 R'[c,t l, t2; )'t3- 2p)a(t3-t2)] ... (17)
 UC+ P-6 uz

 where 0< tI < t2 and oc(t) = e(P+ 6t for t>0,
 a(t) - ePt for t<0.

 We see that R' and p(ucz + u_zp/2p + () have the same sign for t3 < ((p + 6)t1 + pt2)/2p + (
 and opposite signs for t3 > ((p + 6)tl + pt2)/2p + (. Figure 2 illustrates the pattern of inter-
 temporal complementarity when u,- + uz_p/2p + 3 > 0. A positive value indicates comple-
 mentarity between t3 and t1; a negative value indicates complementarity between t3 and t2.
 In this case we see that the proposed preference functional exhibits complementarity between
 adjacent dates. In the opposite case where u, + uzzp/2p + 6<0, the signs would be reversed,
 giving us complementarity between distant dates instead.

 |R

 I~~~~ ~ ~~~~~ L I 3

 FIGURE 2

 Complementarity pattern when uCZ+ 2P UZZ> 0.

 In terms of the Wan-Brzeski example [21, p. 521] a person with distant complementarity
 who expects to receive a heavy supper would tend to eat a substantial breakfast and a light
 lunch. A person with adjacent complementarity would tend to eat a light breakfast and a
 substantial lunch in the same circumstances.

 4. SATIATION OF UTILITY

 When preferences are intertemporally independent, it seems reasonable to assume that more
 consumption is always preferred to less. In the present model, satiation is more plausible.
 If we compare steady states, then the customary level of consumption z must rise with the
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 6 REVIEW OF ECONOMIC STUDIES

 current level c. If the dissatisfaction engendered by higher expectations exceeds the enjoy-
 ment of higher realized consumption, the result will be a reduction in total utility.1

 Figures 3 and 4 show the contours of the function u(c, z) in the c-z plane. By assump-
 tion (P. 4) these contours bound convex level sets. Since z = 0 if c = z, this line is the locus
 of steady states. We consider two cases.

 C

 z

 FIGURE 3

 Indifference map under assumption (P. 3).

 (i) Under assumption (P. 3) we have the configuration shown in Figure 3. No satiation
 is-possible in this case.

 (ii) If we relax assumption (P. 3) we may have the configuration shown in Figure 4.
 In this case we have satiation at z = c = c0.

 A satiated optimal stationary solution will exist if for some perpetually feasible c

 J'(c; tl) = e-t [uA(c, c)+ P uz(c, c) =O. ...(18)

 The economic meaning of equation (18) is clear. At a satiated optimal stationary solution,
 the costs and benefits of a marginal temporary increase in consumption just cancel out.
 Hence, the stationary solutions defined by (18) are ones at which the economy will be
 indifferent between accepting and rejecting a marginal increment of consumption. Such

 1 It has also been suggested that one could interpret z as the stock of pollution resulting from past
 consumption-a very different interpretation from that in the text, but nevertheless one quite in keeping
 with the structure of the model. Equation (6) is then a radioactive decay equation for the pollutant. With
 this interpretation it becomes much easier to accept the possibility of satiation.
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 RYDER JR. & HEAL OPTIMAL GROWTH 7

 solutions could in principle occur in conventional optimal growth models, but they would
 require u'(c) = 0 for finite c: such a possibility is usually ruled out by assumption. In the
 present model it is more plausible to permit the total welfare impact of an increment of
 consumption to be zero, because there are costs to offset against the obvious benefits of
 an increase in consumption.

 A

 cl

 ? / ~~~~~~~slope

 0 COI c -
 FIGURE 4

 Indifference map when assumption (P. 3) is relaxed.

 In Figure 4 a satiated optimal stationary solution will occur where the c = z line is cut
 by an indifference curve with slope (p + 3)/p> 1. This can only occur for c> co. Under
 distant complementarity, such a point is unique, but there is no such assurance under
 adjacent complementarity. To see this, let us define

 q(c)=- uc(c, C) + -P UA(C, c). ... (19)
 p+6

 A satiated optimum occurs when q(c) = 0. But

 q'(c) = (p + 3)ucc + (2p + 3)uc. + puzz ...(20)
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 8 REVIEW OF ECONOMIC STUDIES

 Under distant complementarity, q'(c) <0, but under adjacent complementarity, the terms in

 (20) may be offsetting. The concavity assumption (P. 4) implies

 0? ( + 2Ucc + 2p ( + ucz +P UZZ
 322

 =- ucc+p(p + 6)q'(c). . .(21)
 4

 Thus we have

 q'(c) < 2_ CC >0 ... (22)
 4p(p + )

 which may allow multiple satiated optimal solutions as shown in Figure 5. By assumption
 (P. 5) we can assume that q(c) > 0 for small c, so the first satiated optimal solution must have
 q(cl) = 0, q'(cl) < 0.

 icc)~

 0: v Ct

 FIGURE 5

 _ _

 '4'

 s~~~~~~~~~~ I

 CO C C C 3 C c

 FIGURE 6

 The effect of changes in 3 can be seen in Figure 6 which shows the slopes of the indif-
 ference curves along the locus c = z. By concavity, this curve can cross -uzuc = 1 only
 once at c0, but nothing guarantees its monotonicity at other points. It is easily shown that
 q 2< 0 as -uzuc (p + 6)/p. Satiated optimal stationary solutions occur where the curve
 crosses -uzluc = (p + 6)/p. If there is no discounting, c = 0, there is a unique satiated
 optimal stationary solution at c0. An increase in 3 will increase solutions like c1 and C3

This content downloaded from 128.59.222.107 on Mon, 28 Aug 2017 22:06:54 UTC
All use subject to http://about.jstor.org/terms



 RYDER JR. & HEAL OPTIMAL GROWTH 9

 where q'(c) < 0, and will decrease solutions like c2 where q'(c) > 0. A double solution like C4
 will separate into two distinct solutions if 3 is increased and will vanish if 3 is decreased.

 Figure 7 shows how c = z varies with k across stationary states.
 By (4) and (6), if k = = 0, we must have

 c = z =f(k)-Ak.

 Cl

 0 k SiA A kI I k k,z k kk k

 FIGURE 7

 IC

 k? k1 k, k, ks Il kOlt k k
 FIGURE 8

 As k rises from 0 through k to k/, c rises from 0 to c at k (the golden rule point) and then falls
 back to 0. If c1 > c, the existence of satiation in the utility function is irrelevant, since it is
 not feasible to sustain a satiated optimal stationary solution. If, as shown in Figure 7, we
 have one or more c,<c, then each corresponds to two possible levels of k: ki1 and ki2
 where

 n<ilk<i <s, k
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 10 REVIEW OF ECONOMIC STUDIES

 The relationship between u(c, c) and k across stationary states is given in Figure 8.
 There are two maxima at ko1 and kO2 and a local minimum at the golden rule k.

 Satiated optimal stationary solutions lie between ko1 and kO2. They generally come in pairs
 and are arranged more or less symmetrically around k. With no discounting, 3 = 0, there

 would be only k1l = ko1 and k12 = kO2. As 3 is increased c1 is increased so klj moves
 away from koj toward k; as c2 is decreased so k2jmoves away from k toward koj.

 5. CHARACTERIZATION OF OPTIMAL PATHS

 The following sections are concerned with the nature of optimal paths in the model
 described above. These paths are found to differ from those described for the one-sector
 model by Cass [2], Mirrlees [13], Ramsey [16] and others. There is still a unique optimal
 stationary solution (the modified " golden rule "), but the optimal trajectory may overshoot
 this target. This overshooting may be repeated and need not converge to the optimal
 stationary solution. When we relax assumption (P. 3) and allow satiation, there may be a
 multiplicity of optimal stationary solutions. Kurz [11], working with a model where the
 capital stock appeared as an argument of the welfare function, also found a multiplicity of
 stationary solutions. This similarity is not altogether surprising, as there is some similarity
 in the formal structures of the two models. The paper by Chakravarty and Manne [4], in
 which the argument of the instantaneous welfare function is the rate of change of the level
 of per capita consumption, seems to be concerned with a problem similar to the present
 one: but the formulation, and therefore the results, are very different.

 Samuelson [18] and Wan [21] have examined discrete-time models closely related to
 ours. Samuelson found turnpike properties when 3 is " small ". We find that counter-
 examples are possible when 3 is " large ". The most striking results of Wan's explorations
 involve satiated paths with interdependence within the planning period.

 In problems of this sort, the existence of an optimal solution is usually established
 (implicitly) by a round-about process-namely one establishes necessary and sufficient
 conditions for optimality and constructs a path which satisfies these conditions. Because of
 the difficulty of the construction in this model, we must attack the existence problem directly.

 Theorem 1. Under assumptions (P. 4), (T. 1) and (T. 2) there exists a unique consumption
 path that maximizes (3) subject to (4), (5), (6), (7). The proof is given in Appendix A.

 In order to characterize the optimal path we shall apply the familiar Maximum Principle
 of Pontryagin [15]. Suppose there are functionsp(t) and q(t), t _ 0, representing the shadow
 prices of z and k respectively. Let us define the Hamiltonian as

 H(p, q, z, k, c) -u(c, z)+pp(c-z)+q[f(k)-tk-c]. ... (23)

 M(p, q, z, k) = max IH(p, q, z, k, c). ... (24)
 0 _ c < f (k)

 The conditions of optimality are now

 H(p, q, z, k, c) = M(p, q, z, k), ... (25)

 P M am ... (26)
 z

 a Iq- a ... (27)
 ak'

 p(t) < 0 for all t ... (28)

 q(t) _ 0 for all t ... (29)
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 RYDER JR. & HEAL OPTIMAL GROWTH 11

 lim e -`p(t)z(t) = 0 ... (30)
 t- oo

 lim e `tq(t)k(t) = 0. ... (31)

 Theorem 2. Suppose there exist functions p(t), q(t), zo(t), ko(t), co(t) satisfying (4)-(7),
 (25)-(31). Then {z?(t), ko(t), co(t)} is the optimal path.

 This theorem is a straightforward application of a familiar result, since the maximized
 Hamiltonian is concave in the state variables. See, for example, Arrow and Kurz [1;
 Section II. 6].

 If future utility is not discounted, 3 = 0, the functional (3) diverges. We may still
 obtain an ordering of feasible consumption path using the overtaking criterion of Von
 Weizsacker [22]. We replace the transversality conditions (30), (31) in Theorem 2 by

 lim p(t)z(t) < oX ... (32)
 t- oo

 lim q (t)k(t) <oo. ... (33)
 t-+ co

 The proof, a straightforward adaptation of Von Weizsaicker's proof, is omitted.
 Condition (29) is of some importance in distinguishing between paths, and can be justi-

 fied by the following argument. Suppose k(t) and c(t) to form an optimal path starting
 from k(0) and z(0). k(O) is raised to k'(0) and a new consumption path is defined by
 c'(t) = c(t). This consumption policy is clearly feasible in a right-hand neighbourhood of
 t = 0, and is in fact perpetually feasible. For let k'(t) be the resulting time-path of the capital
 stock: if k'(t) > k(t) for all t, then the new policy is clearly feasible and has the same payoff as

 the old one. If k'(to) = k(to) for some to, then the original consumption policy is again
 feasible as it is possible to set k'(t) = k(t) for all t> to. Additional initial capital can,
 therefore, never reduce the payoff associated with an optimal policy. But q(O) is the incre-
 ment in payoff associated with an increment in ko, so this establishes that q(O) ? 0 on an
 optimal path. (See, for example, Peterson [14].) Obviously the same argument can be used
 for any t>O, thus establishing the point.

 Let us examine the optimal path more closely. There are two possible phases. In
 Phase I, condition (25) has a corner solution:

 c = ftk), ... (5-1)

 UC > q-P pp .. .(25-1)

 In Phase II, it has an interior solution:

 O<c <f(k), ...(5-2)

 UC= q-pp. .. .(25-2)

 Assumption (P. 5) implies that it can never be optimal to consume nothing. The equations
 describing the behaviour of the system are

 k = - Ak, Phase I ... (4-1)

 k = f(k)-)Ak-c, Phase II .. .(4-2)

 z = p[f(k)-z], Phase I .. (6-1)

 z = p(c-z), Phase II . ..(6-2)

 p = ( +p)p-uU, .. .(26-1, 2)

 - = ( + A)q-(uc + pp)f '(k), Phase I ... (27-1)

 c = [3 +A -f'(k)]q. Phase II . . . (27-2)
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 12 REVIEW OF ECONOMIC STUDIES

 The description of the optimal paths is best conducted by locating stationary solutions
 to the system (4), (6), (26) and (27), and then discussing the manner in which such points
 may be approached. It is easy to verify that there is no stationary solution in Phase I, for
 in this phase,

 kJ=z=Oiff k=z=O. However,4=Oiff q= (u,+pp)f'(k) <U+

 which can occur only iff' < ( + A): but by assumption (T. 2) this is impossible when k = 0.
 In contrast to this, Phase II may be richly endowed with stationary solutions. These fall
 into two categories.

 (i) One stationary point is the conventional modified golden rule solution. This is
 given by

 f'(k*) = + .. (34)

 C* =f(k*)-Ak* ... (35)

 z* = c* ... (36)

 uz(c*, Z*) = ( + p)p* ... .(37)

 q* = uj(c*, z*)+ 6+P uz(c*, z*). ... (38)
 Under assumption (P. 3),

 q* > - P (uc + uz) > 0.
 3+p

 (ii) The second category of stationary solutions, which must be empty unless we relax
 assumption (P. 3), consists of the satiated optimal stationary solutions described above in
 Section 4. These solutions satisfy

 q = uc(ci, ci)+ P uz(ci, ci) = 0 ...(39)
 p+6

 z= ci ... (40)

 p= uz(ci, ci) ... (41)
 '3+p

 f(kj) - Aki = ci j = 1, 2. ... (42)
 In the neighbourhood of a stationary point, the system can be approximated by a linear

 system. From (25-2) we obtain

 c-c* = - Ucz(z_z*) P (p pP )+ I (q-q*). ...(43)
 ucc ucc ucc

 Then
 2

 -Pfl+ Ucz) 0 _ _

 1 -p(l ~UCZ o cc u cc 0 cc

 k uc_ f_ _ p 1 k-k*
 = ucc ucc ucc ... (44)

 Pl u + XCZ)2 0 6+p(1+ucz Ucz P-P
 vcc C C? /

 q ) 0 - q*f it 0 3+).-f'j q-q*
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 RYDER JR. & HEAL OPTIMAL GROWTH 13

 If ,u is a characteristic root of this dynamic system, we have

 (a +,i _f' _ m)(f'-, _ i _)D[8 2 _ 3 _py _ p(3+p)] _f 82 _ 3p, _ p(3 + p)] = ...(45)

 where

 -= qf *...(46)
 ucc

 =(2p+6)UCZ +puzz ...(47)
 ucc ucc

 and all derivatives are evaluated at the stationary solution in question. Note that y <0
 under adjacent complementarity, y = 0 under intertemporal independence, and y >0
 under distant complementarity. (See Section 3.)

 We will first describe the motion about the modified golden rule solution. We will
 then consider satiated optimal stationary solutions.

 6. THE MODIFIED GOLDEN RULE SOLUTION

 Under Assumption (P. 3) the modified golden rule solution is the only stationary solution of
 the system. By (19), (38) we have

 q* = q(c*)>0, f3>O
 6+?-f'(k*) - 0.

 Then the characteristic equation (45) simplifies to

 4- -263 + (22 _ 0)p2+ 6fl + = - ... (48)
 where

 ar = P[P++y]+13 ...(49)

 T = p(p+3)fl> O. *.(50)

 The four roots of this polynomial are given by

 - = 2 + 1 2 + 64+ T+i| +f - + <52a+ (1 it = +c+ +32a+4zr+ a + 4%r+4. ...(51)
 2 2 22 '1 '4

 By the assumption of concavity (P. 4) we have

 Y p ( P \2 y- ...(52)
 p \2 /

 32 ...(53)

 4-

 The first radical in (51) is always real; the second may be imaginary or real. The roots are
 symmetrical about 3/2. For 3 = 0, there must, therefore, be two stable roots (negative real
 parts) and two unstable roots (positive real parts). By continuity, this must also hold when
 3 > 0 is small. We shall see presently what may happen when 3 is large.

 Assuming for the present that we have two stable and two unstable roots, we may
 assure convergence to the modified golden rule by restricting ourselves to the plane spanned
 by the characteristic vectors corresponding to the two stable roots. If all four roots have
 positive real parts, the linear approximation can still be derived by examining the motion
 associated with the two roots having the smallest real parts. These roots are found by
 choosing the (-) sign for the first radical in equation (51). In this way we obtain a decision
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 14 REVIEW OF ECONOMIC STUDIES

 rule for the control variable c = c(z, k). At the modified golden rule, we have c(z*, k*) = c.
 We can show (see Appendix B) that

 Ck(z*, k*) > O, ... .(54)
 and

 cz(z*, k*) 2 0 as r 0, cz(z*, k*)< 1. .. (55)

 Thus an increase in capital will increase optimal current consumption. Under adjacent
 complementarity, an increment in the customary level of consumption will result in a lesser
 increment in the same direction to the optimal level of current consumption. Under
 intertemporal independence, an increment in customary consumption has no effect on the
 optimal current consumption. Under distant complementarity, an increment in customary
 consumption will result in an increment in the opposite direction to optimal current con-
 sumption.

 Now let us examine the patterns of optimal motion about the stationary point. This
 motion will converge to the modified gQlden rule if we have two stable roots. It will have
 the form of a node if these roots are real, a focus (spiral) if they are complex. The product of
 all four roots of the polynomial (48) is

 r > 0. ... (56)

 None of the roots can vanish. Thus ambiguity about the stability of the roots (51) can occur
 only in case they are pure imaginary.

 Spiralling occurs if

 + 62a 62 + +2f4,r > - +a
 2

 or equivalently,

 _ ~[Vp2+p + p /+]2 <- [/p2+p 6 _ Vf]2
 _3 y Y ... (57)

 p p

 The motion is stable if

 |- + +62 +4iT> , 2 4

 or equivalently

 y>(6^2-(p2?_p6+f)-164+4(p+p6)fl)/p Y- ... (58)

 The r , Y2 and y3 defined in (57) and (58) satisfy 0 > Y1 > Y2 > Y3*
 Under intertemporal independence or distant complementarity, we always get a stable

 node. V, the minimum value of y consistent with concave utility, was defined in (52). A
 little manipulation shows that

 yi > y if 6 > 21f-212p11,

 Y2 > r if 6 ? i[Ip+21f? p1p1]>21p,

 y3 ? v if 3 ? 21/3+ 2/2p/f.

 Thus under weak discounting, the motion must be stable, but under sufficiently strong dis-
 counting and appropriately weak concavity or utility, instability may occur. Figure 9 shows
 the regions of stability for various admissible values of r and 6, given the values of , and p.

 In the proof of Theorem 1, we have shown that z and k are uniformly bounded on all
 feasible paths. We have shown that under assumption (P. 3) the modified golden rule (34),
 (35), (36), (37), (38) is the only stationary solution with finite values for p and q. We have
 seen that this stationary solution is stable if either discounting or interdependence is weak.
 If interdependence is very weak, we will have a stable node as illustrated in Figure 10. With
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 Regions of stability.

 somewhat stronger interdependence, we will have a stable focus as illustrated in Figure 11.
 When both discounting and interdependence are strong, the stationary point may be

 unstable as illustrated in Figure 12. In this case, unless we start from the stationary point,
 we can never get there on an optimal path. But then, where else can we go? There are two
 other possible stationary points in z and k, but to approach them entails asymptotically
 diverging values of p and q. These points are z = 0, k = k and z = 0, k = 0. The first of
 these cannot be optimal, since it can be dominated by the usual " golden rule " argument.
 The second cannot be optimal since q must eventually become negative as the origin is
 approached.

 There is, however, a third possible asymptotic behaviour. That is to approach no
 final state of rest, but rather to oscillate endlessly in a stable limit cycle. This is the outcome
 shown in Figure 12.

 Let us examine the motion along a typical optimal path. A country with a low capital
 stock but a high level of recent consumption might start by reducing its consumption level
 gradually, so that capital may continue to fall for a while. Soon consumption will have
 been reduced to the level which permits capital to start accumulating again. The process of
 belt-tightening will slow down and eventually reverse as more capital is accumulated. As
 capital grows, it will reach the modified golden rule level, but by now the economy is so
 used to low consumption, that there is no rush to raise it to the long-run optimal level.
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 k ~~~~~~~~K
 FIGURE~ 10

 Stable node 1 ? y' _ 0.

 z

 z *1

 kg k

 FIGURE 1 1

 Stable focus Y2 < y < rl.
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 k* k
 FIGURE 12

 Unstable focus with limit cycle r3 < Y < Y2.

 Instead, consumption will rise gradually, eventually reaching the level that causes capital7to
 stop rising and begin falling. As capital falls the rise in consumption will slow down and
 eventually reverse as we come once more to the condition of a high level of consumption
 and a low capital stock.

 Depending on the parameters of the model, this overshooting may occur only once, or
 it may be repeated over and over again. In the latter case, the overshooting may be by a
 lesser amount on each iteration as the economy narrows down on its target. Or it may wind
 up repeating the same moves over and over without ever getting closer to the stationary
 point.

 7. SATIATED OPTIMAL STATIONARY SOLUTIONS

 If we relax assumption (P. 3) we may find one or more satiated optimal stationary solutions
 as discussed above in Section 4. Recall from Section 4 our definition

 q(c) =- uc(c, C) ++P uA(C, c).- ... (19)

 If q(c*)>O where c* is the consumption at the modified golden rule, then the modified
 golden rule is an optimal stationary solution and has the local properties worked out in
 Section 6 above. This would occur if c* <cl or if C2<C*<C3 for the configuration of

 B-40/1
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 18 REVIEW OF ECONOMIC STUDIES

 Figure 5. If q(c*) <0, the modified golden rule is not an optimal stationary solution, since
 it violates condition (29). This would occur if c1 < c* < c2 or c* > C3 in Figure 5.

 At a satiated optimal stationary solution, the linearized dynamic system (44) is simpli-
 fied since q = ,B = 0.

 The characteristic quartic equation (45) now takes the simple form

 = 0. ...(59)

 In the neighbourhood of a satiated optimal stationary solution, the capital constraint

 irrelevant. Let us, therefore, neglect it and solve for the paths satisfying

 UC = -PP ... (60)
 = p(c-z) ... (61)

 P = ( + p)p-u.. ... (62)

 The characteristic equation is

 9 2_6y_p(p+6+y) = 0. ... (63)
 The roots are

 It= - ? +24p(p+3+y). ... (64)

 By (21) and (47) the roots are real. By (20) and (47), we see that both are positive when
 q'(ci) >0 and that the signs are opposite when q'(ci) <0. The phase diagram is shown in

 P C. CL C3 c

 p
 lp

 zo

 FIGURE 13

 Figure 13. Note in particular that the first solution cl is a saddle point, and that successive
 solutions alternate between saddle points and unstable nodes (a tangency solution such as
 C4 is counted twice). The optimal paths (heavy arrows) move away from the adjacent node
 toward the adjacent saddle point. In particular, if z is small, we approach c1.

 Now we can simply add k and q to the system by setting

 k-=f(k)-Ak-c ... (65)

 4 = q =-0. ...(66)

 As long as c ? f(k), we remain in Phase II. Then the system is feasible, and paths tending to
 stationary solutions satisfy Theorem 2.
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 At points where c = f(k) we have the boundary of Phase II. If the motion is crossing
 the boundary into Phase II, we may extend the solution backward into Phase I using equa-
 tions (4-1)-(6-1), (25-1)-(27-1). If the motion is crossing out of Phase II, we may extend the

 I

 A

 I' /nf(k) X
 z I//

 cfi t~~~~~~~~ k a-/

 ? 1 kit k,,z, k k
 FIGURE 14S

 I,~~~~~~~~~00

 k kt k

 FiGuRE~ 14

 solution forward into Phase I. Figure 14 shows the configuration under distant complemen-
 tarity with a unique satiated optimal stationary solution cl. Figure 15 shows a more
 complicated configuration, possible under adjacent complementarity, with a multiplicity of
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 20 REVIEW OF ECONOMIC STUDIES

 satiated optimal stationary solutions. In either case there are certain critical paths (shown
 as heavy arrows) which divide the positive quadrant into regions A and B. In region A,
 all motion converges to some proper stationary point in Phase II. In region B, all motion
 ultimately enters Phase I, where q immediately becomes negative, and z and k approach the
 origin, where there is weeping and wailing and gnashing of teeth by assumption (P. 5). The
 boundary of region A will pass through one or more stationary points, and wherever it
 does, will be tangent to one of the characteristic vectors of that stationary point. The charac-
 teristic values are

 jut =f '-)2,

 8L2 = +-' 83 = 2 +j62+4p(p+6+y)s ...(67)
 Y4= 2 2

 it is stable for k > k and unstable for k < k. u2 is stable for k< k* and unstable for k> k*.
 We have already discussed the stability of u3 and 14. The motion described in Figures 14
 and 15 corresponds to 4u1 and 14.

 Let {Zh, kh, ph, qh} be the characteristic vector corresponding to ph. Then

 (P+ N)z = P(ff i u)kh, ...(68)
 p(P+ 63 h)qh = -UCC[Y2 - + y)]Zh. ...(69)

 As in Section 6 above, there is an optimal decision rule c = c(z, k). In region A, this
 rule depends only on z. In region B, its derivatives may be computed by examining the
 linear motion in the neighbourhood of the stationary points. This motion will be associated
 with the two smallest characteristic roots, unless such motionviolates an optimalitycondition.

 For large values of k, f '- A < 3/2, we have u1 <12, so the two smallest roots are It1 and /14.
 For small values of k, f '- A> 3/2, we have [2 < 1, so the two smallest roots are 12 and 14.
 Substituting (67) into (68) and (69) yields z1 = q = q3 = q4 = 0. But in general q2 # 0.
 For [2 <1jt, we can show that q2<0 to the right of the characteristic vector (z4, k4) and
 q2>0 to the left. Thus motion associated with 2 violates condition (29) to the right of
 (z4, k4), so in this region, the linear approximation of the optimal motion is associated with
 ,u1 and [4. We shall call the partial derivatives in this region c and z4, since the region
 includes all of region A, where capital is eternally abundant, as well as those parts of region
 B in which capital is initially abundant.

 To the left of (z4, k4) at any satiated stationary point withf '- A > 3/2, we have the region
 in which optimal paths economize capital right from the beginning. Since this regime is a
 subset of region B, the partial derivatives of the decision function in this region will be called

 cB and CB. We show in Appendix B that

 CA(ci, kij) = 0, ... (70)
 kcB(ci, ki I) >O0, ...*(71)

 cA(Ci, kij) < 1 as q'(ci) < 0, ... (72)
 CzA(Ci, kij) 2 0 as y < 0, ... (73)
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 RYDER JR. & HEAL OPTIMAL GROWTH 21

 By (70) and (71) we see that changes in the capital stock have no effect on consumption
 in the region of abundance, but a reduction of capital in the region of capital shortage will
 reduce consumption. If capital is abundant, the effects of an increment in customary con-
 sumption are clear. Under distant complementarity, optimal current consumption
 will move in the opposite direction. Under adjacent complementarity current con-
 sumption will move in the same direction by a lesser amount at a stable satiation point
 and by a greater amount at an unstable satiation point. These effects are diminished in the
 scarcity region and are even reversed if the marginal product of capital is high. In the

 latter case c(z, kil) has a local maximum at z = ci. If customary consumption is incre-
 mented in one direction (depending on the pattern of complementarity), current consump-
 tion is reduced for purely preferential reasons, moving us into the region of abundance. If
 customary consumption is incremented in the other direction, the preferred increase in

 zI

 O ks k* klk

 FIGURE 16

 current consumption would lead to a capital shortage. But since the marginal product of
 capital is so high, it is better to reduce consumption temporarily, permitting a much larger
 increase in consumption after the capital stock has grown.

 We turn now to the task of piecing together all these fractions of optimal paths. For
 the configuration shown in Figure 14, we may consider two cases. If cl<c*, then
 q* = q(c*) < 0. The stationary point (k*, z*) lies inside region A and is dominated by satia-
 tion solutions. The phase diagram for this case is given in Figure 16. If c* <cl,q* = q(c*) >0
 and (k*, z*) is an optimal stationary solution in region B. For the configuration shown in
 Figure 15, there are three cases (Figures 17, 18 and 19). The modified golden rule is an
 optimal stationarypoint if c* < c1 (Figure 17) or if c1 <c2 <c* (Figure 19). But for c1 <c* <c2
 (Figure 18), the modified golden rule is dominated by satiated solutions.

 8. NUMERICAL RESULTS

 The general analysis conducted above has revealed a number of interesting possible con-
 figurations for optimal paths. In this section we compute the roots of the quartic (45) for
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 z

 c3

 k kti L*.a. k
 FIGURE 17

 C* <Cl.

 z

 Z A

 FIGURE 18

 CI<C*<C2.

 a variety of plausible functional forms, and study the behaviour of optimal paths in
 neighbourhoods of stationary solutions.

 In all calculations, a Cobb-Douglas production function of the form f(k) = was
 used. Values had to be assigned to the three parameters 6, A and p: in the calculations
 reported, 6 and A were set equal to 0-01 (in a number of trial cases, 6 was varied between 0.01
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 C1 <C2<C*.

 and 01, and A between 001 and 002. Such variations caused no departure from the
 pattern of roots that occurred when - = A = 001). The parameter p, which controls the
 length of the system's " memory ", was varied between 0-1 and 03, and sometimes beyond
 this range. The values 0.1 and 03 were felt to span the range of likely p-values. When
 p = 0-1, exp (-30p) = 00498 and exp (- lOp) = 0O368: consumption that occurred a
 generation back is given five per cent of the weight of current consumption, and consump-
 tion that occurred ten years back, one third the weight. When p = 03, exp (-30p)
 = 0000123 and exp (-lOp) = 00498: the consumption of a generation back is given
 virtually no weight, and that of ten years back, only five per cent of the weight of current
 consumption. For all solutions calculated, the modified golden rule solution has k*
 68-0, c* = 3 40.

 8. 1 The Function -exp-(c-z)-c-

 With this function I u, 1/1 UC I < 1 for all c and z. Setting c - z and increasing both together
 always increases welfare, as in Figure 3. Hence, there are no stationary points with satiation.
 It is the conventional golden rule capital-labour ratio that gives the highest indefinitely-
 maintainable level of instantaneous welfare. For this function, we have adjacent comple-
 mentarity, y <0. The roots to (45) at a modified golden rule solution are as follows for
 various values of p, (i2 =-1)

 p = 005: +0-023+0014i: -0'013+0014i

 p = 010: +0-028+0017i: -O0-018+0017i

 p = 020: +0038+0018i: -0028+0OlSi

 p = 030: +0'048+0014i: -O0038?+0014i
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 In all cases, two roots have negative real parts, so that there is a plane in the four-
 dimensional phase space from within which the stationary solution can be approached.
 Hence, it is locally stable in the sense that if the initial values k(0) and z(0) lie within a certain
 neighbourhood of it, then there exist prices q(0) and p(O) such that the differential equations
 starting from the point (k(0), z(0), q(0), p(O)) converge asymptotically to the solution. It is
 shown below that if k(0) and z(0) lie within this neighbourhood, an optimal path will follow
 one of these convergent trajectories. All components of the motion in the neighbourhood
 of (k*, z*) are oscillatory, giving rise to both damped and anti-damped cyclical movements.
 Correct choice of the initial prices can ensure that only the damped movements are effective:
 the optimal path will oscillate, converging to (k*, z*), the modified golden rule stationary
 solution, as in Figure 11. That the paths shown in Figure 11 are indeed optimal paths, at
 least for initial points " near " (k*, z*), follows from Theorem 2. It is clear that such paths
 satisfy the conditions of Theorem 2: in particular, since q >0 at (k*, z*), it must (from
 (27-2)) be positive on any path leading to this point.

 One can calculate the periods of the cycles implied by the complex roots: these periods
 (in years) are shown for various p values in the following table. The column headed " damp-
 ing" gives the ratio of the amplitude at the end of a cycle to that at the beginning of
 the cycle.

 p Period Damping

 005 438 0 32 x 10-2

 0 10 361 0-13 x 10-2

 020 342 0-65 x 10-4

 0 30 455 0-38 x 10-8

 The cycles are extremely lengthy and very heavily damped: the error involved in approxi-
 mating them by a smoothly rising or falling path might not be too great.

 It is interesting to discuss in intuitive terms why oscillatory behaviour arises, and why
 it should become more heavily damped as p rises and the " memory " shortens. The
 explanation seems to lie in the fact that utility is derived from the difference between c and z,
 and that if c is increased quickly, z follows only with a lag. Hence, the following cycle may
 be advantageous in raising the term I - exp - (c- z): at first increase c quickly, z lags behind
 so that (c - z) increases. Now maintain c constant as z catches up, and then reduce c slowly.
 By making the reduction gradual, the amount by which z overshoots c can be minimized:
 after the reduction, the cycle begins again. On the upward part of this cycle, (c - z) can
 be made large and positive: on the downward part, it can be prevented from becoming
 large and negative. Under certain circumstances this behaviour gives a larger integral of
 satisfaction than is obtained along a path where c and z move steadily. As p rises, the
 responsiveness of z to current consumption rises, making it more difficult to increase the gap
 between c and z: the attractions of oscillatory behaviour are thus reduced. Thus accords
 with common sense, as one would expect optimal paths in the present model to tend to the
 " usual " Ramsey paths as p gets very large.

 8.2 The Function (c/z)i
 With this function, I u 1/1 uC I-1 when c = z: its contours are the borderline between the
 cases shown in Figures 3 and 4 and are rays proceeding from the origin. The function
 exhibits adjacent complementarity, but is not concave. Moving along the c = z ray in the
 z = c plane neither raises nor lowers instantaneous welfare: raising consumption and expected
 consumption in proportion leaves satisfaction unchanged. There are again no satiated
 stationary solutions and q >0 at the modified golden rule stationary solution. Earlier
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 sections suggest that optimal paths will proceed towards this point, and the numerical
 results seem to confirm this. The roots of (48) at (k*, z*) are as follows:

 p = 0O10: +0-042+0-016i: -0-032+0-016i

 p = 0-20: +0-052+001li: -0-042+0s01li

 p = 0 30: +0 070, +0 049: -0 039, -0 060.

 The stationary solution is once again approached via damped cycles for low p values.

 p Period Damping

 0 10 396 0 27 x 10-5

 0-20 570 040x 10-10

 For p = 0 30, the approach paths are as shown in Figure 10; these results seem to reinforce
 the argument that oscillatory behaviour is less likely for high p values.

 8.3 The Function (-Z)3-C-+

 In this case the contours are as shown in Figure 4, and raising c and z together along the
 c-z ray eventually lowers social welfare. For this function, we have distant comple-
 mentarity, y >0. There are now two satiated stationary points: some idea of the relative
 positions is conveyed by the following figures. c* = 3 402, k* = 6804, and for all p values
 used, c1- 061, k11 0 23 and k12 _ 910. Applying (67) we find that at each satiated
 solution there are two positive and two negative roots. Since c1 < c*, we would not in this
 case expect an optimal path to tend towards the modified golden rule solution, as the golden
 rule capital-labour ratio no longer gives the highest indefinitely maintainable level of satis-
 faction: indeed it gives a local minimum of this quantity. We have the motion shown in
 Figure 16.

 Computations reveal the following roots at the satiated optimal stationary points.

 Fork,, 0-23:

 p = 0-10; IU = 0 862, -0 852, 0-164, -0-154; k11 = 0 236

 p = 0-20; IU = 0-886, -0-876, 0-318, -0308; k1l = 0-227

 p = 0 30; Iu = 0 894, -0 884, 0-471, -0A461; kll = 0 224

 For k12 910:

 p = 0-10; ,U = -0006440, 0-016440, 0-164, -0-154; k12 = 906

 p = 0 20; ,U = -0 006443, 0-016443, 0-318, -0 308; k12 = 907

 p = 0 30; ,U = -0 006445, 0-016445, 0-471, -0-461; k12 = 908

 Since the results are similar for all cases, we calculated characteristic vectors only for
 p = 0 10. The right-hand stationary solution k12 = 906 is in the interior of region A. The
 relevant roots are 4u1 = 0 006440 with characteristic vector k' = 1, z' = q' = p' = 0 and
 Iu2 =-0 154 with characteristic vector

 k4 = 1.000, z4 = -0 269, q4 = 0, p4 = 3.75.

 At the left-hand stationary solution k1l = 0 236, there are three relevant roots. The un-
 stable root p, = 0 862 carries motion into the interior of region A along the characteristic
 vector k' = 1, z' = q = p' = 0. The stable root ,U4 = -0-154 has the characteristic
 vector k4 = 1.000, z4 =- 184, q4 = 0, p4 = 25 6, which forms the boundary between
 regions A and B. The stable root 4u2 = -0 852 approaches the stationary point from the
 interior of region B along the characteristic vector k2 = _ 1.000, z2 = 0228, q2 = 4 23,
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 p2 -0875. Thus we have q >0 in the interior of region B. It would not be optimal to
 approach the stationary point along this vector in region A since we would have q <O
 violating (29). Similarly it is not optimal to move into region B along the vector k' = 1,
 Z = q = p' = 0, since we must eventually enter Phase I, and would have q < 0 in the interior
 of Phase I. As indicated above, k11 and k12 differ substantially from k* in the case investi-
 gated, so that there is here a marked difference from the results in papers such as [2] and
 [13]: only Kurz [11] has found a pattern with any resemblance to the present one.

 9. CONCLUSIONS

 The results presented above confirm that altering the objective function in the manner
 suggested does indeed alter the nature of an optimal path, and the alteration may be quite
 substantial. If satiation is excluded, there is still a unique optimal steady state-the usual
 modified golden rule. The differences are in the optimal behaviour around that stationary
 point. Under independent utility, the optimal current consumption depends only on the
 current capital-labour ratio, k, and the modified golden rule is approached monotonically in
 k. Under dependent utility, the optimal current consumption is also affected by past levels
 of consumption. Now k may overshoot its equilibrium value before settling down. Indeed,
 it may not even settle down, but rather oscillate endlessly in a limit cycle.

 If an increase in a uniformly maintained consumption level eventually decreases
 utility, there may be satiated optimal stationary points in addition to or in place of the
 modified golden rule. Under satiation it is possible that an increase in the amount of capital
 available to the economy will make it no better off. This is reflected in the fact that the price
 of capital becomes zero in such a case. It is not surprising that such a possibility might
 fundamentally alter the nature of an optimal programme of capital accumulation.

 Of course, the model discussed is, like any simple model, deficient in a number of
 respects. One deficiency is that there is no provision for disposing of output or capital.
 If, for example, the equality in equation (4) were replaced by a weak inequality, then there
 might well be situations in which it becomes optimal for a country to give away some part
 of its output. Another qualification derives from the fact that expected consumption levels
 may not be determined only by past consumption, but may have an exogenous upward
 trend arising in affiuent societies from the activities of advertisers, and in developing
 countries, from international comparisons.

 APPENDIX A

 Theorem 1. Under assumptions (P. 4), (T. 1) and (T. 2) there is a unique consumption
 path that maximizes (3) subject to (4), (5), (6), (7).

 Proof. Existence: We consider the nonlinear process in R3

 w= e 6tu(c, z) ...(A-1)

 z =p(c-z) ... (6)

 k =f(k)-Ak-c ... (4)
 with initial state w(0) = 0, z(0) = z0 >0, k(O) = ko >0. The admissible controls are all
 measurable functions c(t) with

 0 ? c ? f(k). (5)

 We show next that the system is bounded. Note first that there exists ki >0 such that
 fQ() = Ak, and f(k)-Ak < 0 for k > k. Now let

 k = max [k, ko], kT = koe T>0. . (A-2)
 Since -Ak < k ' f(k)-Ak, we have

 kT < k(t) ? E for all 0 < t < T.
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 Then O ? c(t) ? f(k) for all O ? t ? T. Let

 z = max [f(k), zO], 9T zoeP-pT>O. ... (A-3)

 Since - pz ? z < pf(k) - pz, we have

 ZT < z(t) ? z for all 0 ? t < T.
 Let

 u= max u(c, z), = ii/6. ...(A-4)
 0 :5 c Sg 2

 Then w(t) < w for all 0 < t T. Let

 V(w, z, k, t) {(w, z, k)f w < e-tu(c, z), z=p(c-z), k =f(k)-Ak-c c, 0 c <f(k)}.

 ...(A-5)

 The set V(w, z, k, t) of velocity vectors is convex, closed, bounded in z and k, and bounded
 above in w. Let

 rt ~~~~~~~~~~~~~~t

 S(t) {(w, z, k)I w < f e-Tu(c, z)dr, z = zo+ p(c-z)dT,
 Jo o

 t

 k = ko+ [f(k) - Ak- c]dT for some admissible control c(T), 0 < ? t}. ...(A-6)

 Then by a theorem of Lee and Markus [12; p. 242, Theorem 2], the attainable set S(t)
 is closed, bounded in z and k, and bounded above in w, and varies continuously onO ? t ? T.

 We know that J[c( )] = lim w(t) < iw for all admissible controls. Let M = sup J[c(.)]
 t-' oo

 over all admissible controls. Consider a sequence of admissible paths

 {Wi(t), zi(t), k'(t), c'(t); t ? O} i = 1, 2, ...
 such that

 lim J[ci(.)] = M.
 i-oo

 For any g >0, there exists I>0 such that i>1 implies

 J[ci( )] >M -2 2

 Let T = (In 25/ce)8. Then i>I implies

 M< J[c.)] + = w'(T) + e tu(ci z')dt+ 2
 2 Jr 2

 < w(T)+eJ u + 2 ='(T)+
 For each T, we can choose a subsequence so that

 W (T)-w?(T), z!(T)--z0(T), ki(T)-+k (T).

 Then [w0(T), z0(T), ko(T)] e S(T) for all T ? 0. Therefore, {w0(t), zo(t), ko(t), co(t); t > 0}
 is an admissible path. But w?(T) > M-e. Therefore,

 J[c?()]-= lim wo(T) = M. ..(A-7)
 T -cxo

 Thus it is also an optimal path.
 This completes the proof of existence. Uniqueness can be established in a straight-

 forward way using the concavity assumptions (P. 4) and (T. 1).
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 APPENDIX B

 We wish to determine the derivatives of the optimal decision rule c(z, k) described in Sections
 6 and 7. If we linearize the two simultaneous differential equations (4) and (6) under the
 decision rule, we obtain in the neighbourhood of a stationary point (zs, ks)

 EZ] = [PCz-P PCk][k-k] .(B-1)

 This linear system has the characteristic polynomial

 Y2+ [Ck + P -CZ)-]u + p[ck-3(1 -C)] = 0. ...(B-2)

 Knowing the appropriate characteristic roots yuj and ,uj, we can solve for the derivatives of
 the optimal decision rule

 Ck= (f- )(f+ p ) ...(B-3)

 (P + ,i)(P + /,j) ...(B-4)
 P(f'-)+P)

 The two appropriate roots are generally the ones with the smallest real parts, unless one of
 these can be shown to be ineligible.

 If the modified golden rule (z*, k*) has q >0, it is an optimal stationary solution. The
 appropriate roots are

 32 34 32 6

 1i i = -i ++ - +2+ 4T-1 - +U7- +2f+ 4z ...(B-5)
 2 2 4 2 4

 Sincef-A = 3, we have f '-A-pi > 3/2 > O, so clearly Ck(Z*, k*) > 0. Substituting (B-5)
 into (B-4) we obtain

 c: =(])[(2 +P) -(2 + ) 2 +a+ +2+4T +I + 4

 ... (B-6)
 Recalling the definitions (49) and (50),

 ( p) (b2 ++ ) i($4 +32 7+4 ) as y 0.

 Then

 ( +p) [p +3p+p2+/+ py+ - +2%+4-i 6 + p+ ++ 4 +62 +4z]

 Taking positive square roots, we find

 ( -+ + 2 + 6+2a+4z 2 ( 62 ++ 64 +2a +4T. ...(B-7)
 Substituting (B-7) into (B-6) we find that

 c: '< 0 as y O.

 By assumption (P. 4), we have
 62

 4
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 Then

 (p's + P2) [2+ a-#+ +- +a +4T] > [ +1 + 2A/ +a+4T]

 Taking positive square roots, we find

 (2 +P) jb- +Ui+ b +2+4 ,> +pb+p2+j lb4+327+4c -(+2)

 . (B-8)

 Comparing (B-8) with (B-6) we see that

 cZ <1.

 If there are satiated optimal stationary solutions (ci, kij) we have seen in Section 7
 that the characteristic roots are

 11i =f'-Z,

 /12 = 6+A-f'g

 P3 = - +jI/2+4p(p+3+y) ...(67)
 2

 P = b 3 I/62+4p(p+3+y)
 2

 One of the two smallest roots is always Pu4, the other is P2 if f'- A)> 3/2 and pu if
 f'- A </2. But even if 12 is one of the smallest roots, it is ineligible in the region to the
 right of the characteristic vector (z4, k4), since negative values of q are not optimal (equation
 (29)). Thus at stationary points wheref'-A> >/2, the appropriate roots are (42, p4) in the
 half-neighbourhood to the left of (z4, k4) and (4tt, I/) in the half-neighbourhood to the right
 of (z4, k4). At stationary points wheref'-A<3/2, the appropriate roots are (,ul, ,U4).

 If the appropriate roots are (It 1, 4t4), equations (B-3) and (B-4) become

 cA(ci, kii) = 0, .. (70)

 cA(Ci, kij) = 1+ p p 4 [(2 +) - +) +PV]. ... (B-9)

 Clearly

 cA(ci, k ij) < 1 as 14 < 0 as q'(ci) 5 0, ... (72)
 and

 czA(ci, kij) 2 0 as y 5 0. ... (73)
 If the appropriate roots are (12, 14), equations (B-3) and (B-4) become

 2 (f-A- )(f'-A- 6 +IN/52 +4p(p + 6+Y)) B~(Ci, kil) = 2 2 24(P3+) ...(B-1O)

 cZ(ci, kil) = f +P - / P + + +P). (B-1 1)
 p L= 2 +P) \I2 ) ] (f -A+P)
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 30 REVIEW OF ECONOMIC STUDIES

 Since these derivatives apply only forf'-A > c/2, we have

 ck (ci, kil) > (,

 c A(Ci, kil) (2 ) + (f 2) '<

 (2 ) t 2)

 rCB(cr k.iA

 REFERENCES

 [1] Arrow, K. J. and M. Kurz. Public Investment, the Rate of Return and Optimal Fiscal
 Policy (Baltimore and London: Johns Hopkins Press for Resources for the Future,
 1970).

 [2] Cass, D. " Optimum Growth in an Aggregative Model of Capital Accumulation ",
 Review of Economic Studies, 32 (July 1965), pp. 233-240.

 [3] Chakravarty, S. "Optimal Savings with Finite Planning Horizon ", International
 Economic Review 3 (September 1962), pp. 338-355.

 [4] Chakravarty, S. and A. S. Manne. " Optimum Growth when the Instantaneous
 Utility Function Depends upon the Rate of Change in Consumption ", American
 Economic Review, 58 (December 1968), pp. 1351-1354.

 [5] Cohn, N. R. C. The Pursuit of the Millennium (New York: Oxford University Press,
 1970).

 [6] Davies, J. C. " Towards a Theory of Revolution ", American Sociological Review,
 27 (February 1962), pp. 5-19.

 [7] Heal, G. M. " Optimal Growth with Endogenous Changes of Tastes ", Christ's
 College, Cambridge (1971).

 [8] Hicks, J. Capital and Growth (New York: Oxford University Press, 1965).

 [9] Katona, G. Psychological Analysis of Economic Behavior (New York: McGraw-

 Hill, 1951).

 [10] Koopmans, T. C. " Stationary Ordinal Utility and Impatience ", Econometrica, 28
 (April 1960), pp. 287-309; reprinted in Scientific Papers of Tjalling C. Koopmans,
 (Heidelberg: Springer, 1970), pp. 387-409.

 [11] Kurz, M. "Optimal Economic Growth with Wealth Effects ", International
 Economic Review, 9 (October 1968), pp. 348-357.

 [12] Lee, E. B. and L. Markus. Foundations of Optimal Control Theory (New York:
 Wiley, 1967).

 [13] Mirrlees, J. A. "Optimum Growth when Technology is Changing ", Review of
 Economic Studies, 34 (January 1967), pp. 95-124.

 [14] Peterson, D. W. " The Economic Significance of Auxiliary Functions in Optimal
 Control ", International Economic Review (1972).

 [15] Pontryagin, L. S. et. al. The Mathematical Theory of Optimal Processes (New York
 and London: Interscience, 1962).

This content downloaded from 128.59.222.107 on Mon, 28 Aug 2017 22:06:54 UTC
All use subject to http://about.jstor.org/terms



 RYDER JR. & HEAL OPTIMAL GROWTH 31

 [16] Ramsey, F. P. " A Mathematical Theory of Saving", Economic Journal, 38
 (December 1928), pp. 543-559.

 [17] Ryder, H. E. " Optimal Accumulation under Intertemporally Dependent Utility ",
 Technical Report No. 19, Department of Economics, Brown University; Technical
 Report No. 41, IMSSS, (Stanford University, 1971).

 [18] Samuelson, P. A. " Turnpike Theorems Even Though Tastes are Intertemporally

 Dependent ", Western Economic Journal, 9 (March 1971), pp. 21-25.

 [19] de Tocqueville, A. The Old Regime and the French Revolution (New York: Harper
 and Bros., 1856).

 [20] Volterra, V. Theory of Functionals and of Integral and Integro-Differential Equations
 (New York: Dover, 1959).

 [21] Wan, H. Y. " Optimal Saving Programs Under Intertemporally Dependent Prefer-

 ences ", International Economic Review, 11 (October 1970), pp. 521-547.

 [22] von Weizsacker, C. C. "Existence of Optimal Programmes of Accumulation for an

 Infinite Time Horizon ", Review of Economic Studies, 32 (April 1965), pp. 85-104.

 [23] von Weizsacker, C. C. " Notes on Endogenous Changes of Tastes ", Journal of
 Economic Theory, 3 (December 1971), pp. 345-372.

This content downloaded from 128.59.222.107 on Mon, 28 Aug 2017 22:06:54 UTC
All use subject to http://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17
	image 18
	image 19
	image 20
	image 21
	image 22
	image 23
	image 24
	image 25
	image 26
	image 27
	image 28
	image 29
	image 30
	image 31

	Issue Table of Contents
	The Review of Economic Studies, Vol. 40, No. 1, Jan., 1973
	Front Matter [pp.i-ii]
	Optimal Growth with Intertemporally Dependent Preferences [pp.1-31]
	Some Implications of the Permanent-Income Hypothesis [pp.33-37]
	On the Service Flow from Labour [pp.39-46]
	Optimal Growth with Robust Feedback Control [pp.47-60]
	Economic Growth and the Environment [pp.61-77]
	Optimal Stabilization Policies for Deterministic and Stochastic Linear Economic Systems [pp.79-95]
	The Effect of Market Organization on Competitive Equilibrium: the Multi-unit Case [pp.97-113]
	The Demand for Money: A General-Equilibrium Inventory-Theoretic Approach [pp.115-130]
	Notes and Comments
	Sufficient Conditions for Optimal Stabilization Policies [pp.131-138]
	A Note on the Generalized Production Function [pp.139-140]
	Uncertainty and Indifference Curves--A Correction [p.141]
	Comment on Rushdy and Lund [pp.143-144]
	Quasi-Competitiveness and Cournot Oligopoly [pp.145-148]

	Back Matter



